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Abstract

Vortical structures and instability mechanisms of the unsteady free surface wave-induced separation around a

surface-piercing NACA0024 foil at a Froude number of 0.37 and a Reynolds number of 1.52� 106 are studied using an

unsteady Reynolds-averaged Navier–Stokes (URANS) code with a blended k�e/k�o turbulence model and a free

surface tracking method. At the free surface, the separated flow reattaches to the foil surface resulting in a wall-bounded

separation bubble. The mean and instantaneous flow topologies in the separation region are similar to the owl-face

pattern. The initial shear-layer instability, the Karman-like instability, and the flapping instability are identified, and

their scaling and physical mechanisms are studied. Validation with experimental fluid dynamics (EFD) and comparison

with complementary detached-eddy simulation (DES) indicate that URANS resolves part of the organized oscillations

due to the large-scale unsteady vortical structures and instabilities, thereby capturing the gross features of the unsteady

separation. The URANS solutions show an initial amplitude defect of 30% for the free surface oscillations where the

shear layer separates, and the defect progressively increases downstream as URANS rapidly dissipates the rolled up

vortices.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Three-dimensional (3-D) flow separation is a vast area of study, which is not yet fully understood. The free surface

adds to complications due to the waves and their interaction with boundary layers and vortices, free surface turbulence,

and air–water interfacial effects such as bubble entrainment and surface tension. In some cases, adverse piezometric

pressure gradients due to steep waves induce and/or modify boundary layer separation. Gaining insight into the fluid

mechanics of these areas would be of both fundamental and practical interest, especially regarding applications in ship

and ocean engineering.

Historically, the investigation of steady 3-D separation has been conducted through topological analysis, which

provides a framework to classify the separation and deduce the volume flow field based on the nodes, saddles, and

the lines of separation and attachment on the surface streamlines. Although it is rarely used for analyzing unsteady
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3-D separation, topological analysis can still be performed at instantaneous time steps to elucidate the transport

properties of the vortices in the separation region (Post et al., 2003).

Typically, unsteady separation is analyzed by studying the different instability mechanisms associated with the

organized oscillations due to large-scale vortical structures. For non-reattaching separated shear layers such as in flow

past circular cylinder and spheres, the main instabilities are the shear-layer instability and the Karman instability. For

reattaching separated shear layers such as in flow past the blunt leading edge of cylinders and backward-facing steps,

the main instabilities are the shear-layer instability, the ‘‘Karman-like’’ shedding instability caused by amalgamation of

the shear-layer vortices, and the flapping instability.

The shear-layer instability initiates at a critical Reynolds number (Re) which depends on the spatial restrictions

imposed by the mean recirculation length, i.e., at least one wavelength has to fit into the recirculation length and the

instability should have reached a significant level of amplification. For cylinder flows, a large disparity exists in

the literature for the precise value of the critical Re (�350–3000) due to additional effects of free-stream turbulence

and the span-wise end conditions (Prasad and Williamson, 1997). The frequency fS of the shear-layer instability, which

is similar to a Kelvin–Helmholtz instability, scales with the momentum thickness of the shear layer at separation y such

that the normalized Strouhal number is given by Sty ¼ fSy/US, where US is the shear-layer velocity at separation. Ripley

and Pauley (1993) demonstrated computationally that Sty is independent of Re in the range 113 928oReo364 747 for

separated laminar boundary layers over airfoils. However, they concluded that Sty varies with the nondimensional

pressure distribution and it therefore is geometry dependent.

The primary wake instability for non-reattaching separation like in the case of circular cylinders is the Karman

instability, which is caused by the interaction between the two opposite vortices. The Karman instability initiates at

Re�49 and is evident even after the boundary layer transitions to turbulence at Re�106 (Williamson, 1996). The

Karman shedding frequency fK scales with the distance between the separated shear layers. Roshko (1955) found that

the normalized Strouhal number, Sth ¼ fKh/US, where h is the half-wake thickness, has a universal value of 0.08, and is

independent of both Re and the geometry.

For separation with wall-bounded separation bubbles like in the case of backward-facing steps (Lee and Sung, 2002)

and flow past the blunt leading edge of cylinders (Sigurdson, 1995), the shear-layer vortices amalgamate together to

form large-scale vortices that impinge on the wall just after the recirculation region, interact with the mirror image, and

shed. Although the vortex interaction is with its mirror image, unlike the staggered vortical arrangement of the Karman

vortices, Sigurdson (1995) showed that the scaling factors remain the same, the equivalent h in this case being the

normal distance of the separated shear layer from the wall. Henceforth, we shall use the term ‘‘Karman-like’’ shedding

for such type of symmetric vortex shedding for wall-bounded bubbles. For the Karman-like shedding, Sth mostly varies

between 0.07 and 0.09 for different geometries (Sigurdson, 1995).

Another significant difference between the free separation bubbles and wall-bounded separation bubbles is the

existence of a stationary recirculation region for the latter case, which exhibits a periodic enlargement and shrinkage

that has been termed as the ‘‘flapping’’ instability. This type of instability has a standing-wave-type nature (Kiya and

Sasaki, 1985). The general consensus is that the flapping frequency fF scales with the mean reattachment length XR, such

that the normalized Strouhal number is given by StR ¼ fFXR/UN, where UN is the inlet velocity. For flow past the blunt

leading edge of cylinders (Kiya and Sasaki, 1985), StR ¼ 0.12 with XR ¼ 10 RC (RC is the cylinder radius). For flow

past backward-facing steps (Lee and Sung, 2002), StR ¼ 0.1 with XR ¼ 7.4 HS (HS is the step height). For flow past a

2-D square rib (Liu et al., 2008), StR ¼ 0.073 with XR ¼ 9.75 HR (HR is the rib height); measurements of the instantaneous

reattachment point in response to the flapping motion indicated an oscillation of 0.12 XR about the mean XR.

The applicability of unsteady Reynolds-averaged Navier–Stokes (URANS) to simulate these instabilities has been

studied for a few basic geometries with mixed results. In the context of triple decomposition, URANS is assumed

capable of resolving the unsteady mean flow, i.e., the mean and organized oscillations flow field, while the random

fluctuations are modeled as Reynolds stresses. Generally, URANS relies on the existence of a spectral gap between the

time scales of the unsteady mean flow and the random fluctuations, thus separating the resolved and modeled time

scales. However, measurements of spectra for most bluff body flows indicate an absence of the spectral gap. Under such

circumstances where the resolved and modeled scales of motion overlap, the URANS eddy viscosity model, unlike

large-eddy simulation (LES), fails to account for the scales of motions already resolved by the particular grid, and hence

does not reduce the eddy viscosity accordingly. This leads to an excessive artificial dissipation that over-damps the

resolved scales of motion, causing an amplitude defect. In many cases, the smallest scales of organized motions, namely

the shear-layer vortices are completely smeared out by the eddy viscosity. Constantinescu et al. (2003) did a

comparative study of numerical simulations of the sub-critical flow over a sphere using URANS with different

turbulence models, LES, and detached-eddy simulation (DES) at Re ¼ 104. The URANS models predicted the value of

the Karman shedding frequency accurately, but with an amplitude defect, and completely failed to predict the

formation of shear-layer vortices. Nevertheless, even in the absence of a spectral gap, researchers have shown the ability
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of URANS to predict the shear-layer vortices for other geometries. Khorammi et al. (2001) used URANS with the k�o
turbulence model for the acoustic analysis on the cove region of a cambered slat, and were able to predict the formation

and the subsequent development of the free shear-layer instabilities that were responsible for the radiated noise.

Comparison with experimental measurements showed a good correspondence for the frequency spectrum, although the

amplitude of the computed noise was about 30% smaller than the measured values. Paik et al. (2004) did a comparative

study using URANS with the Spalart–Allmaras turbulence model and DES for flow past a corner mounted rectangular

block and found that URANS yields unsteadiness within the shear layer. The location of the major peaks in the power

spectrum distribution agreed well with the DES simulations, albeit with an amplitude defect greater than 50%. Thus,

the ability of URANS to predict the shear-layer vortices is case dependent and relies on whether the length and time

scales of the shear-layer vortices are large enough to overcome the excessive damping effects of the modeled eddy

viscosity.

Few studies have investigated the effects of free surface on the instabilities associated with unsteady 3-D separation,

and they have mainly focused on the Karman instability. Kawamura et al. (2002) performed LES simulations for flow

past surface-piercing circular cylinders. Simulations at Froude number (Fr) ¼ 0.8 showed that at the deep regions

Karman shedding occurs, but near the free surface large-scale interactions between the two separated shear layers

become less prominent due to the deformation of the free surface. The conjecture was that the inclination of the

separated shear layers due to the presence of waves hampers large-scale vortex shedding. The region in which the vortex

shedding is hampered extends to about one diameter from the mean water level. Lin and Li (2003) performed LES

simulations for flow past surface-piercing square cylinders and demonstrated that the presence of waves can reduce

both the vortex strength and frequency of the Karman vortex shedding induced by a uniform current due to the

nonlinear wave–current interaction.

Related, but unique is the separation induced solely by the free surface waves where the deep flow remains attached.

Most of the work on this type of separation has focused on the mean flow separation pattern and topological analysis.

Detailed analysis of the instability mechanisms governing the unsteadiness has not been performed until now. This type

of separation was first identified by Chow (1967) through an experimental fluid dynamics (EFD) study using a surface-

piercing foil designed for insignificant separation for the deep condition. Chow showed that the separation occurred at

medium and high Fr, initiated just beyond the wave trough and extended to the foil trailing edge. Subsequently, Stern

et al. (1989) identified the existence of this type of separation in their EFD study on the effects of waves on the

boundary layer of a surface-piercing flat plate with a superposed Stokes wave generated by an attached upstream-

submerged horizontal hydrofoil. The separation occurred at high wave steepness, initiated beyond the wave trough, and

extended to the plate trailing edge. Using the same flow geometry, Stern et al. (1993) performed laminar Navier–Stokes

computations, which magnified the separation size due to the increased three-dimensionality and response to pressure

gradients, and thus facilitated the analysis of the flow topology based on critical point concepts. The laminar solutions

showed an outward spiral node on the free surface with a saddle point on the plate. The global flow topology resembled

the owl-face pattern (Perry and Chong, 1987), but with one less node–saddle combination on the foil surface. Zhang

and Stern (1996) performed steady RANS simulations using a Baldwin–Lomax turbulence model with free surface-

tracking method on a surface-piercing NACA24 foil at Fr ¼ 0.37 and Re ¼ 1.52� 106. This geometry allowed for a

more prominent separation at the turbulent regime compared to the Stern et al. (1989, 1993) geometry, thereby

facilitating more detailed experiments and topological analysis of the turbulent solutions. The flow topology was similar

to Stern et al. (1993), showing global topological similarity to the owl-face pattern, but with extra critical points on the

foil surface. Complementary EFD wave-profile zp measurements at the intersection of the foil and the free surface

showed an abrupt rise in the free surface wave-elevation z just after the bow wave trough (toe), at which point the flow

separates with vertical oscillations amounting to 15% of the z dynamic range in the separation region. Pogozelski et al.

(1997) is the only experimental work that analyzes the volume flow field for such flows. They conducted experiments

using a surface-piercing foil and constructed a sketch of the flow structure based on video images and

PIV measurements at one spatial orientation for Fr ¼ 0.25 and Re ¼ 6.8� 105. Sketches depict stream-wise counter

rotating vortex pairs occurring close to the free surface, which begin with shoulder wave breaking. Unfortunately,

analysis was limited to Fr ¼ 0.25 at which there was no flow reversal, whereas all the other related studies have focused

on separation with flow reversal at higher Fr. The authors point out that flow reversal is evident for Fr40.30 but

measurement was not made due to the number of entrained bubbles making velocity measurement difficult. Steady

RANS by Kandasamy (2001) with a second-order finite difference method using a blended k�o/k�e turbulence model

and improved free surface tracking on the same geometry and flow conditions as Zhang and Stern (1996) showed better

comparison of the mean z and foil surface CP with complementary EFD by Metcalf (2001). The flow topology was

similar to the owl-face pattern. Subsequently, Metcalf et al. (2006) identified certain dominant periodic modes from the

EFD frequency spectra of z and the foil surface CP for Fr ¼ 0.37, but the flow physics behind these frequencies could

not be explained since the complexity of the separation made detailed volume flow measurements difficult.
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Fig. 1. Surface-piercing NACA24 foil at Fr ¼ 0.37.
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The current study extends the previous steady RANS studies to URANS in order to explain the instability

mechanisms behind the dominant periodic modes identified in the EFD measurements, as part of a complementary

URANS and DES study using both surface-tracking and level-set approaches. This paper focuses on the URANS with

tracking approach, which was the first to be performed. The turbulence-generated disturbances in the free surface are

not modeled, as they require a two-phase level-set approach with specialized boundary conditions (Brocchini, 2002).

The free surface eruptions in Fig. 1 indicate that the broken free surface is a result of the strong turbulence generated

underneath the free surface meeting the free surface (Brocchini and Peregrine, 2001). Triple decomposition of the

unsteady free surface elevation spectra by Metcalf et al. (2006) shows that the average root mean square (r.m.s.) of the

visually prominent random fluctuations is an order of magnitude smaller than that of the underlying organized

oscillations in the separation region. The turbulence-induced free surface eruptions would affect the evolution of

turbulent eddies of similar and lower time scales in the inertial and dissipation ranges of the energy spectrum. However,

its effect on the organized oscillations occurring in the energy containing range, which is the focus of the current study,

is small. The current approach proved capable in capturing the instabilities driving the organized oscillations, but with a

significant amplitude defect. Solutions obtained using URANS with level-set approach failed to capture the instabilities

due to the additional dissipation from the reinitialization of the level-set function, which compounds with the already

dissipative nature of URANS. The complementary DES study (Xing et al., 2007) focused primarily on the level-set

approach because of the difficulty in achieving a monotonically converged solution using the surface-tracking

approach, which is attributed to the limiter on the maximum wave slope required by the surface-tracking method. The

DES study supports findings from the current URANS study, and highlights the relative advantages and disadvantages

of the different computational methods. The difficulty in isolating and visualizing the vortical structures from the many

small-scale eddies in DES established that need for URANS, which damps the random fluctuations and resolves only

the large-scale organized oscillations albeit with deficiencies in their amplitudes. The main similarities and differences of

the current URANS solutions with respect to the DES solutions will be discussed in the concluding remarks.
2. Computational method

The general-purpose parallel URANS solver, CFDShip-Iowa, has been developed at the Iowa Institute of Hydraulic

Research over the past 15 years. Documentation of the basic method, URANS with the blended k�e/k�o turbulence

model and the DES turbulence model using the free surface-tracking method (version 3.03), is provided in Wilson et al.

(2006). Version 3.03 has been extended to version 4.0 (Carrica et al., 2006) with the use of the single-phase level-set

method. The current paper uses version 3.03 of the code with the URANS and surface-tracking method, whereas
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Xing et al. (2007) focuses on the DES with level-set using version 4. The following provides a brief description of the

URANS and surface-tracking method used.
2.1. Governing equations

For Cartesian coordinates, the continuity equation and the momentum equation in the nondimensional tensor form

are

qUi

qxi

¼ 0, (1)

qUi

qt
þUj

qUi

qxj

¼ �
qp̂

qxj

þ
1

Re

q2Ui

qxjqxj

�
q
qxj

uiuj . (2)

All equations are nondimensionalized using the reference velocity U0 (towing speed of the foil ¼ 1.27m/s),

the foil length L ¼ 1.2m, and the water density r ¼ 998 kg/m3 (average water temperature 19 1C). Ui ¼ (U, V, W)

are the dimensionless Reynolds-averaged velocity components, xi ¼ (x, y, z) are the coordinate directions, t is the

dimensionless flow time, p̂ ¼ pabs=rU2
0 þ z=Fr2 is the piezometric pressure coefficient, Re ¼ U0L=n is the Reynolds

number, n is the molecular viscosity ¼ 1.00263� 10�6m2/s (average water temperature 19 1C), Fr ¼ U0=
ffiffiffiffiffiffi
gL
p

is the

Froude number, and uiuj are the Reynolds stresses which are two-point correlation of the random fluctuations ui.
2.2. Turbulence

The Reynolds stresses are directly related to the mean rate-of-strain through an isotropic eddy viscosity nt as

expressed in

�uiuj ¼ nt

qUi

qxj

þ
qUj

qxi

� �
�

2

3
dijk, (3)

where dij is the Kronecker delta and k ¼ 1
2
uii is the turbulent kinetic energy. Substituting (3) for the Reynolds-stress term

in (2) gives the modified momentum equation:

qUi

qt
þUj

qUi

qxj

¼ �
qP

qxj

þ
1

Reff

q2Ui

qxjqxj

�
qnt

qxj

qUi

qxj

þ
qUj

qxi

� �
; (4)

P ¼ p̂þ 2
3
k and 1=Reff ¼ 1=Reþ nt, and nt are computed using a blended k�e/k�o model (Menter, 1994). A blending

function is designed to be unity in the viscous sublayer and logarithmic regions of boundary layers, where the k�o
model is set active, and gradually switches to zero in the wake region, where the k�e model is set active, to take

advantage of the strengths of both the models. The k�o model does not require near-wall damping functions and uses

simple Dirichlet boundary conditions while the k�e model does not exhibit sensitivity to the level of free-stream

turbulence, as does the k�o model.
2.3. Free surface

The computational domain covers the water region only and the grid is dynamically conformed to the free surface

location. The kinematic free surface boundary condition given by Eq. (5) updates the grid every time step to compute z
(expressed dimensionless henceforth) and requires that the free surface is a material surface

qz
qt
þU

qz
qx
þ V

qz
qy
�W ¼ 0. (5)

At the intersection of the free surface and no-slip surface (i.e., the contact line), Eq. (5) becomes singular when the

contact line is in motion but the fluid velocity is zero due to the viscous no-slip boundary condition. To overcome the

problem, a small near-wall region is ‘‘blanked out’’ when solving Eq. (5) and the solution in this region is linearly

extrapolated from the interior of the domain. The dynamic free surface boundary condition requires that the stresses

are continuous at the free surface, and provides the boundary conditions for velocity and pressure, which will be

provided in forthcoming sections.
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2.4. Numerical method

All the solutions presented in this paper use the third-order finite difference scheme for the spatial discretization of

the momentum equation, as the second-order scheme dissipates the shear-layer vortices too rapidly, and fails to predict

their subsequent amalgamation. A second-order finite difference scheme is used for the temporal discretization. The

pressure implicit split operator algorithm used uses a predictor-corrector approach to advance the momentum equation

while enforcing the continuity equation. Fourth-order artificial dissipation implicitly added by taking a linear

combination of full- and half-cell operators (Sotiropoulos and Abdallah, 1992) overcomes the pressure velocity-

decoupling problem caused by the collocated grid. The overall method is fully implicit, and a line-ADI (alternating

direction implicit) scheme with a pentadiagonal solver and under-relaxation is used to solve the algebraic equations. A

message-passing interface-based domain decomposition approach is used, where each decomposed block is mapped to

one processor of a parallel IBM SP 3 supercomputer.

2.5. Geometry and flow conditions

Fig. 1 shows a photo of the foil at Fr ¼ 0.37 and Re ¼ 1.52� 106 in the tow tank. The tow tank dimensions are

w/L ¼ 2.5 and h/df ¼ 2 (where w is the width of tow tank, h the depth of tow tank, and df the foil draft). To reduce

computational cost, instead of modeling the exact tow tank conditions, the foil is modeled with an extended foil draft

(2df) where the foil reaches the bottom boundary with no flow beneath the foil, and without the towing tank walls

(Fig. 2). The extended foil draft prevents the restricted water effects due to the bottom from affecting the free surface

solutions. In the tow tank, there is flow beneath the foil along its flat bottom, which forms a separation bubble near the

leading edge affecting the pressure distribution near the foil bottom and the local flow. Previous CFD and EFD

established relatively small dependence of the free surface separation pattern to both the wall and the foil bottom

(Kandasamy, 2001).

Simulations with quantitative verification and validation were conducted for all three experimental conditions

covering minimal, reattaching, and non-reattaching separation: Fr ¼ 0.19, 0.37, and 0.55 with respective

Re ¼ 0.78� 106, 1.52� 106, and 2.26� 106, as provided by Kandasamy (2005). Herein, only the Fr ¼ 0.37 results

are presented since this is the condition at which the most extensive EFD validation data are available, and at which the

DES was conducted. Laminar simulations (both 2-D and Fr ¼ 0.37, at Re ¼ 1500 and 2500) were also conducted to

compare Sty and Sth with that of the turbulent simulations. The laminar simulations also enabled comparison of Sty and

Sth at the free surface with respective values for the deep-flow separation, since the deep flow does not separate for the

turbulent simulations.
Far-field X

Z

Y

R

Le No-slip

Free surface

Exit

Fig. 2. Computational domain, boundary conditions, and grid topology.
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2.6. Computational domain and grids

The foil, with a dimensionless length of 1, extends from x ¼ 0 to 1. The body-fitted C-grid (Fig. 2) was decomposed

into 8 separate blocks for parallel computation. The grid has a far-field boundary that is a semicircle of radius R ¼ 10

encircling the foil with the trailing edge (x ¼ 1) as its focal point. A rectangular grid of length Le ¼ 8 and width 2R

extends from the trailing edge to the exit. The domain size was finalized based on results from domain convergence

studies. Three domains with R ¼ 5, 7, and 10 with respective Le ¼ 5.5, 6.6, and 8 were used in the study. The

nondimensional mean coefficient of total resistance CTX converged with a convergence ratio of 0.6, with a 0.15%

difference between the largest two grids. The wall coordinate y+ ¼ Uty/n, where Ut is the friction velocity, was kept

less than 1 for all grids. The grid is clustered near the free surface too, with an initial grid spacing less than 10�3 for all

the grids. The grids were generated using the commercial code GRIDGEN.

Note that the current simulations use a full domain, whereas Xing et al. (2007) use a half-domain. The full domain

was created in order to consider the very low-frequency asymmetric meandering wake in the far field. However, the

analysis of the far-field wake proved difficult since the running mean of the side forces did not converge to zero even

after 80 flow times on the fine grid. It is reasonable to expect that a much larger domain size and a much longer running

time will be required to resolve this meandering wake, which is beyond the affordable computer resources and scope of

the current study.

2.7. Boundary conditions

The boundary conditions specified on each boundary are as follows. On the foil surface, a no-slip condition is used,

i.e., (U, V, W) ¼ 0 and the pressure gradient is assumed to be zero, i.e., qP/qn ¼ 0 (where n is normal to the boundary).

On the exit plane, axial diffusion and pressure gradient are assumed to be zero, i.e., q2(U, V, W)/qx2
¼ 0 and qP/qx ¼ 0.

On the bottom deep boundary, an impenetrable slip condition is used, i.e., q(U, V, P)/qz ¼ 0 and W ¼ 0. On the outer

boundary, a far-field boundary condition is used, i.e., U ¼ Uo, V ¼ 0, W ¼ 0, and P ¼ 0. On the free surface, the

dynamic free surface boundary condition dictates that q(U, V, W)/qz ¼ 0 and p̂ ¼ z=Fr2. The conditions on the

turbulent quantities are as follows: on the foil surface, k ¼ 0, o ¼ 60=ðRe� 0:075� Dy2Þ, nt ¼ 0; on the exit plane, on

the bottom deep boundary, on the outer boundary, and on the free surface qk/qn ¼ 0, qo/qn ¼ 0, and qnt=qn ¼ 0.

2.8. Analysis methods

The fast Fourier transform (FFT) of z and the foil surface CP time histories enabled the identification of the

frequencies corresponding to the different instability mechanisms, and helped isolate regions where the different

instabilities dominate in the flow field. The time evolution of the vortices was studied at the locations corresponding to

the different frequencies identified, and the instability mechanisms were related to the evolution of the extracted

vortices. The vortices were extracted using two different vortex extraction techniques, the Q criterion (Hunt et al., 1988)

and velocity vector eigenmodes vortex detection (Sujudi and Haimes, 1995). The first method is based on the balance

between the rotation rate and the strain rate, and positive Q iso-surfaces denote regions where the strength of rotation

overcomes the strain thus making those surfaces eligible as vortex envelopes. The main disadvantage of this method is

the difficulty in distinguishing the individual vortices. The second method is based on the extraction of vortex core lines.

This method distinguishes the individual vortices, but sometimes has difficulty in producing contiguous vortex

core lines. The individual limitations of these two methods were overcome by using the two together. The accuracy of

the detected vortices was ascertained by seeding streamlines near vortex cores and visualizing the swirling patterns that

are generally associated with vortices. The topology of separation at different instantaneous time steps was also

analyzed to investigate the behavior of the critical points during events such as vortex merger and breakdown.
3. Verification and validation

Verification and validation used Stern et al. (2001) methodology and procedures with updated correction factors by

Wilson et al. (2004). Verification is a process for assessing the simulation numerical uncertainty USN given by

U2
SN ¼ U2

I þU2
T þU2

G, where UI is the iterative uncertainty, UT is the time-step uncertainty, and UG is the grid

uncertainty. Validation is the process for assessing the simulation modeling uncertainty by comparing with

experimental data D. The comparison error E is given by the difference between D and the simulation S. To

determine if the solutions are validated, E is compared to the validation uncertainty UV, given by U2
V ¼ U2

D þU2
SN ,
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Table 1

Grids used for verification

Grids 1 2 3 4 5 (Non-systematic

final solution grid)

Size 70 680 114 048 187 824 531 006 1 004 400

y+ 0.36 0.3 0.25 0.18 0.9

Table 2

Grid studies for CTX

Case Grids rG pG USN (%)

1 1, 2, 3 1.189 1.94 15

2 1, 3, 4 1.414 2.9 4
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where UD is the uncertainty in the data. If |E|oUV, the combination of all the errors in D and S is smaller than UV and

validation is achieved at the UV level. Metcalf et al. (2006) provide data for the mean z and the mean foil surface CP. In

addition, the time history of z and the foil surface CP are available over 10 flow times after the initial transients have

subsided. This enables quantitative comparisons of the r.m.s. and the FFT for both z and the foil surface CP.

Tables 1 and 2 summarize the grids used for the grid studies and the different studies conducted, respectively. Two

separate grid studies were conducted: Case 1 using refinement ratio ðrGÞ ¼
ffiffiffi
24
p

, and Case 2 using rG ¼
ffiffiffi
2
p

. The

verification of point variables (z and CP) poses a problem at locations where the solution changes approach zero such

that convergence ratio (RG ¼ e32/e21, where e32 and e21 are the solution changes between the fine grid and medium grid,

and the solution changes between medium grid and coarse grid, respectively) approaches zero. To overcome this

problem, separate L2 norms of e21 and e32 over zp were used to define ratios for RG. The same RG value was used in

calculating point-wise USN for zp, z, and CP. UV and E were calculated and the point variables were validated using

grid-4. Grid densities were determined considering initial understanding of flow physics and computer resources, prior

to detailed analysis of results. A finer non-systematic grid (grid-5) was generated with an improved grid distribution to

better capture the features identified from the grid-4 solutions. The solutions from grid-5 lie within the validation

uncertainty intervals of the grid-4 solutions for both CTX and the point variables (zp, z, and CP), and were used for the

analysis of the unsteady separation pattern.

3.1. Iterative and statistical convergence

Parametric studies on sub-iterations (free surface/momentum coupling) for each time step ensured iterative solution

convergence at each time step. Results showed difference of 5% ando1% for CTX by changing free surface/momentum

coupling iterations from 3 to 4, and 4 to 5, respectively. Simulations then used 4 free surface/momentum coupling

iterations. Statistical convergence of the running average on the time histories of CTX established statistically stationary

unsteady solutions. The criterion for statistical convergence is that the magnitude of fluctuations of the running mean

drop to less than 1% of the mean value., i.e., UIo1% mean CTX.

3.2. Time-step studies

Time-step studies were conducted on grid-3 (Case 1 fine grid) for CTX with a refinement ratio of
ffiffiffi
2
p

(Dt ¼ 0.00707,

0.01, and 0.014). The results show oscillatory convergence for CTX with the time-step uncertainty (UT ¼ 0.3% of mean

CTX) similar in magnitude as UI, both being an order of magnitude smaller than UG for Case 1. UT�UI5UG, so that

simulation numerical uncertainty USN ¼ O(UG
2+UT

2+UI
2)�UG.

3.3. Verification of CTX

Table 2 tabulates results from grid studies for mean CTX. For Case 1, the order of accuracy pG ( ¼ 1.94) is lower than

the theoretical order of accuracy pGth ( ¼ 3) with USN ¼ 15%, indicating that the asymptotic range is not reached. For
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Case 2, pG ( ¼ 2.9) is close to pGth, and the uncertainties are much lower compared to Case 1 with USN ¼ 4%. Fig. 3(a)

shows the grid convergence of the CTX running mean for Case 2 grid study, along with the CTX for grid-5 (solution

grid). The mean CTX for the solution grid is 0.013, which lies within the uncertainly interval of grid-4. No EFD data are

available for the validation of CTX. Fig. 3(b) shows the spectra of the general Strouhal number given by St ¼ fL/U0,

obtained by performing an FFT of the solution grid CTX time history. The FFT shows the highest peaks around

St ¼ 0.3, 0.7, and 2, corresponding to the ‘‘flapping’’, ‘‘Karman-like’’, and the shear-layer instabilities, respectively,

which will be discussed in forthcoming sections. The multiple primary instability modes interact non-linearly to produce

sum and difference frequency modes, which in turn interact with the primary instability modes producing more sum and

difference frequency modes (Miksad et al., 1982). This process continues, causing spectral broadening and the

occurrence of the side-banded structures adjacent to the primary instability modes as seen in Fig. 3(b). The second and

third harmonics of the shear-layer instability frequency are also distinctly evident in Fig. 3(b).
3.4. Verification, validation, and discussion of point variables

Fig. 4(a) shows zp for the three grids used in the Case 2 grid study, along with the solution grid and EFD profiles.

Monotonic convergence is achieved, but with pG ( ¼ 1.8) less than pGth, which is consistent with expectations for

solutions on stretched, curvilinear grids. EFD depicts the toe at x ¼ 0.4 with an abrupt recovery (x ¼ 0.4–0.5), followed
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by a more gradual recovery with oscillations further downstream (xX0.5). URANS predicts the location of the toe

accurately, but fails to predict the subsequent sharp rise in zp. This causes an under-prediction of zp at 0.4oxo0.6 and

an over-prediction of zp at x40.6. Fig. 4(b) compares z between CFD and EFD over the entire free surface domain.

EFD shows that the Kelvin wave is displaced away from the foil surface by the separation region. The Kelvin wave is

not displaced far enough in CFD since URANS predicts a smaller separation region. The wave amplitudes are also

higher in CFD. |E| exceeds UV by 15% at the toe and by 10% along the Kelvin wave crest.

Fig. 5(a) compares the r.m.s. of z between CFD and EFD. The superposed free surface mean flow streamlines

illustrate the separation bubble at the free surface in the CFD contour plot. EFD shows that the r.m.s. peaks near the

toe with significant values of r.m.s. in a semi-elliptical region near the shoulder, which roughly corresponds to the shape

of the separation bubble illustrated in the CFD. The CFD r.m.s. values compare better when the shear layer first

separates with about 30% amplitude defect [(CFD�EFD)/EFD� 100%], but the defect increases downstream as

URANS rapidly dissipates the rolled up vortices. Fig. 5(b) shows contours of St corresponding to the dominant

frequency (most energy containing frequency) on the free surface. The contours have a cut-off St of 0.25 based on the

non-dimensional time window (t ¼ 10) used for the FFT. The low r.m.s. regions have been blanked out to eliminate

noise. EFD data indicate that the regions of most significant r.m.s. are dominated by shear-layer and Karman-like
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shedding frequency, whereas in the outer region, flapping frequency is also found along with many points with

intermittent or broad-banded frequencies. Unlike EFD, CFD shows a clear demarcation between the different

instabilities. Three distinct regions are evident: a high-frequency (St ¼ 2) region within the separation region

where the shear-layer instability dominates, an intermediate frequency (St ¼ 0.74) region immediately after

reattachment where the karman-like instability dominates, and a low-frequency (St ¼ 0.32) region enveloping the

separation region where the flapping instability dominates. URANS diminishes the strength of the predicted Karman-

like vortices, which are characterized by lower r.m.s., due to the rapid dissipation of the shear-layer vortices before

amalgamation. The stronger ‘‘Karman-like’’ instability in the EFD and the resulting stronger non-linear interaction

with the shear-layer instability result in the intermittent nature of the dominant frequency contours within the

separation region. The exact orientation of the separated shear layer is not evident from the EFD for comparison, but it

should be noted that the k�e turbulence model under-predicts the level of the turbulent stresses in the detached shear

layer emanating from the separation line and hence sometimes predict a smaller separation region (Johnson et al.,

1994). The square marker on the CFD plot indicates the location at which point-wise comparisons will be presented for

the flapping instability.

Figs. 6(a) and (b) compare the foil surface CP between EFD and CFD, respectively. The CFD solutions were

interpolated into the EFD data acquisition grid to facilitate validation. EFD shows that the free surface effects

penetrate to z ¼ �0.3 and the bottom effects are evident for zo�0.7 with a nearly 2-D pressure coefficient for

the intermediate depths. The foil surface CP reaches a minimum near the toe, and recovers more gradually near the free

surface compared to the deep flow due to the separation. CFD predicts a comparatively quicker pressure recovery at

the free surface, indicating a smaller separation size compared to EFD. This results in a high comparison error near the

reattachment region and validation was not achieved at the reattachment region as |E| exceeds UV by 16%. Note also

that the foil bottom effects lead to an increase in CP close to the foil bottom in the EFD contours which is not modeled

in CFD.

Fig. 7(a) compares the r.m.s. of the foil surface CP between EFD and CFD. The dotted lines on the CFD plots

indicate the boundary of the EFD data acquisition points. EFD shows that significant r.m.s. magnitudes are for a semi-

elliptical-shaped region initiating just beyond the wave trough and extending to the trailing edge with a penetration

depth up to z ¼ �0.25. The CFD predicts a similar semi-elliptical-shaped region of high r.m.s., but with amplitude

defect. Fig. 7(b) shows the St corresponding to the dominant frequency on the foil surface for EFD and CFD. EFD

data indicate that the regions of most significant r.m.s. are dominated by shear-layer and Karman-like shedding

frequency. CFD shows three distinct regions corresponding to the three main instabilities. The shear-layer instability

dominates in the separation region, the Karman-like instability dominates after reattachment, and the flapping

instability dominates underneath the separation region. Due to the rapid dissipation of the shear-layer vortices, their

subsequent amalgamation and shedding in the form of ‘‘Karman-like’’ vortices is significantly damped, and hence the

contour plots indicate an overwhelming dominance of the shear-layer instability. The circle and diamond markers on

the CFD plot indicate locations at which point-wise comparisons will be presented for the shear-layer and Karman-like

instabilities, respectively. The pressure taps used in the EFD on the foil surface are relatively sparse below z ¼ 0.15, and

hence the frequency corresponding to the flapping instability is not apparent.

Figs. 8(a) and (b) provide an EFD/CFD comparison of the fluctuations of CP about the mean and the corresponding

frequency spectra, respectively, at the location (x, z ¼ 0.69, �0.11) indicated by the circle location marker in

Fig. 7(b). The time markers on the CFD plot in Fig. 8(a) indicate instances in the shear-layer shedding time-period

TS at which details of the volume flow will be illustrated in forthcoming sections. The band-averaged FFT is presented

in Fig. 8(b) to smooth out the spike clusters and enable clearer identification of the most prominent frequencies.

The EFD frequency spectrum depicts a peak at St ¼ 1.6, and CFD depicts a corresponding peak at St ¼ 2. The

magnitude of the peak in the EFD spectra is two times higher than that of CFD. Figs. 9(a) and (b) provide an

EFD/CFD comparison of the fluctuations of CP about the mean and the corresponding frequency spectra, respectively,

at the location (x, z ¼ 0.86, �0.14) indicated by the diamond location marker in Fig. 7(b). The time markers

on the CFD plot in Fig. 9(a) indicate instances in the Karman-like shedding time-period TK at which details

of the volume flow will be illustrated. The EFD frequency spectrum depicts a dominant peak at St ¼ 0.7 corresponding

to the Karman-like instability and another lower-magnitude peak at St ¼ 2 corresponding to the shear-layer

instability. The CFD frequency spectrum depicts a dominant peak at St ¼ 0.74 and a peak of slightly lower

magnitude at St ¼ 2. Though the CFD shows a close match of the Strouhal numbers, the amplitudes are roughly

four times lower. Figs. 10(a) and (b) provide an EFD/CFD comparison of the fluctuations of z about the mean

and the corresponding frequency spectra, respectively, at the location (x, y ¼ 0.90, 0.32) denoted by the square

location marker in Fig. 5(b). The time markers on the CFD plot in Fig. 10(a) indicate instances in the flapping time-

period TF at which flow details will be illustrated. The EFD and CFD depict peaks at St ¼ 0.38 and 0.32, respectively.

URANS predicts the amplitude of the flapping frequency accurately (less than 1% difference), indicating that the
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excessive dissipation of URANS has little effect on this standing-wave-type instability. The spectral broadening due to

nonlinear interactions is evident in all the EFD and CFD frequency spectra, with the EFD showing stronger

interactions.
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4. Mean separation pattern

Fig. 11 shows the mean separation pattern. The shear layer separates at the free surface at x ¼ 0.40, and reattaches at

x ¼ 0.82 forming a wall-bounded separation bubble. At the toe, the stagnation CP decreases to 58% of the original level

at the leading edge due to dissipation, which agrees with Pogozelski et al. (1997) who report a decrease of 50–60% for

their case. Assuming that the flow outside the separation region is inviscid, the iso-surface of the stagnation CP at the

toe ( ¼ 0.29), immediately before separation, gives an approximate visualization of the separated shear layer (iso-

surface in Fig. 11(a)). The surface streamlines at the free surface and the foil surface (Fig. 11(b)) illustrate the owl-face

topological pattern. The volume flow is interrogated by using the velocity vector eigen-modes vortex detection (vortex

core line contoured by non-dimensional vortex strength), the Q criterion (iso-surfaces of Q ¼ 1 shown), and volume

streamlines. All three visualization methods show vortical flow transporting fluid from the inward spiral node on the

foil surface to the outward spiral node on the free surface. The vortex strength along the vortex core decreases as it

nears the free surface. The iso-surface of positive Q resembles an inverted ‘‘V’’ shape, which shows an additional

structure after reattachment that traces the path of the Karman-like vortices. The velocity vector eigen-modes method

fails to detect this vortical structure due to its weak nature.
5. Instantaneous separation patterns and instability analysis

The overall unsteady separation exhibits a similar behavior as that observed for other reattaching flows with wall-

bounded separation bubbles. The initial shear-layer instability causes the separated shear layer to roll up and form the
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shear-layer vortices; these vortices amalgamate to form the Karman-like vortices, which interact with their mirror

image and shed immediately after the reattachment point. Meanwhile, the stationary recirculation bubble experiences a

periodic enlargement and shrinkage due to the flapping instability.
5.1. Shear-layer instability

Figs. 12(a)–(d) illustrate the CFD volume solutions at time steps corresponding to the time markers in

Fig. 8. The circle location markers indicate the location at which the CP time histories and frequency spectra

are presented in Fig. 8. The vortex core lines are contoured by the nondimensional vortex strength. The skin

friction lines and free surface streamlines are also shown. The recirculation region on the free surface will be

termed the primary closed separation. The spiral node N1 denotes the initial stage of the shear-layer vortex formation.

The separatrices, namely LS2 (line of separation) and LA2 (line of attachment), converge at saddle point S2 and

enclose the primary closed separation (Fig. 12(a)). LA2 terminates at node Na at the reattachment point. LS2 and

LA2 form a wedge-shaped dividing surface, which is not closed with respect to N1, as LS2 does not reach the free

surface, but rather terminates at N1. As N1 convects downstream, the wedge opens up, allowing the shear-layer

vortex to enter the recirculation region and merge with the vortex in the recirculation region (Fig. 12(b)).

The convection of the node N1 causes the saddle S1 attached with this node to convect downstream. Similar to S2,

the saddle S1 has two separatrices, LS1 and LA1. LA1 also terminates at Na. As N1 convects downstream, the

wedge enclosed by LA1 and LS1 enlarges separating N1 from the primary closed separation (Fig. 12(c)) and the

vortex connecting N1 with the outward spiral node on the free surface breaks down. LS1 terminates at the newly
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formed spiral node N0 (shear-layer vortex) to which the LS1, LA1 wedge enclosure is open (Fig. 12(d)) and the cycle

repeats.

The above described process occurs periodically with St ¼ 2. The shear-layer roll up is evident only on the foil surface

skin friction lines and not on the free surface streamlines. However, the low-pressure field created by the vortex

core causes the free surface to depress along the vortex path causing the shoulder waves with St ¼ 2, which show up as

the dominant St contours on the free surface within the separation region (Fig. 5(b)). y and US were evaluated at the

separation starting point to get the normalized Strouhal number Sty. US ¼ 1.45 and y ¼ 0.0028, which gives

Sty ¼ 0.00386.

Ripley and Pauley (1993) showed computationally that Sty remains almost constant over a range of Re for the case of

laminar flow past an airfoil (Sty ¼ 0.005672%). However, Sty showed a 16% reduction compared to previous

simulations on a different geometry and they concluded that Sty is dependent on the CP distribution. Current

2-D laminar simulations at Re ¼ 1500 and 2500 gave Sty ¼ 0.0063 and 0.00615, respectively, indicating a 2%

difference. The laminar solutions at Fr ¼ 0.37 indicated a change in CP distribution due to the free surface waves, but

Sty did not change significantly (less than 5% difference compared to the 2-D simulations). However, Sty for the

turbulent Fr ¼ 0.37 simulation indicates a significant reduction of about 40% compared to the laminar cases. The

turbulent boundary layer requires a higher adverse pressure gradient to separate. Based on Ripley and Pauley’s

observation that Sty is a function of the non-dimensional pressure distribution, the current results suggest that Sty varies

inversely with the non-dimensional adverse pressure gradient at separation.

The Brown and Lopez (1990) criterion for vortex breakdown in swirling flows states that for breakdown to occur, the

helix angle of velocity should exceed that of vorticity along some stream surface (necessary, but not sufficient

condition). If d ¼ tan�1 (v/w)�tan�1 (Z/z), where the ratios (n/w) and (Z/z) are of the azimuthal and axial components

of velocity and vorticity respectively, then d has to be positive in order for breakdown to occur. Contours of d along the

vortex core (Fig. 13) show that the criterion is satisfied with the breakdown occurring at maximum positive d ( ¼ 0.4)

on the core. Fig. 13 also shows the diverging streamlines and stagnation in the vortex core at the breakdown point with

the flow converging from the top and bottom.
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Fig. 11. Mean separation pattern: (a) iso-surface of stagnation CP ( ¼ 0.29); (b) close-up view of separation region showing vortex core

line colored by vortex strength; iso-surfaces of Q ¼ 1; and surface and volume streamlines.
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5.2. Karman-like instability

Figs. 14(a)–(d) illustrate the CFD volume solutions at time steps corresponding to the time markers in Fig. 9(a). The

diamond location markers indicate the location at which the CP time histories and frequency spectra are presented in

Fig. 9. Here the amalgamation of the shear-layer vortices produces a relatively weak vortex, since it occurs after the

vortex breakdown, which causes an appreciable dissipation. The artificial dissipation of the shear-layer vortices prior to

their amalgamation caused by URANS also contributes to the diminished strength of the predicted Karman-like

vortices. The velocity vector eigen-mode method for core extraction fails to capture the vortex filaments after

breakdown. However, the iso-surface of positive Q indicates the behavior of vortical structures over one Karman-like

shedding period. Figs. 14(a) and (b) illustrate the Karman-like vortex shedding (Vshed) at the beginning of the cycle.

Figs. 14(b) and (c) illustrate the amalgamation of the shear-layer vortices V1, V2, and V3. Fig. 14(d) illustrates the

shedding of the Karman-like vortex after the amalgamation of the shear-layer vortices, thus completing the cycle. This

process occurs quasi-periodically with St�0.74 which shows up in the dominant St contours on the foil surface and free

surface immediately after reattachment. The normal distance of the separated shear layer from the foil at the free

surface, used as the equivalent for half-wake thickness (h ¼ 0.13), gives Sth ¼ 0.066.

Investigation of the laminar solutions at Fr ¼ 0.37 showed that the deep flow exhibits periodic asymmetric Karman

vortex shedding with Sth ¼ 0.08 similar to the 2-D laminar results. At the free surface, the vortices are unsteady, but a

clear periodic shedding was not evident. Sth was calculated based on the frequency of unsteadiness at the free surface

and was found to be 0.069. The free surface decreases Sth, but Sth remains relatively unaffected compared to the

turbulent solution. The decrease in Sth near the free surface is presumably due to the inclination of the separated shear

layer and the induced three-dimensionality, which causes the interaction of the opposite vortices to become less

prominent.
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Fig. 12. Instantaneous separation pattern over one shear-layer vortex shedding period displaying vortex cores at time steps

corresponding to the time markers on the CFD CP time-history plot in Fig. 8(a); the circle location marker indicates the location at

which the CP time history is presented in Fig. 8(a): (a) 0 TS, (b) 3/5 TS, (c) 3/4 TS, and (d) 9/10 TS.
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5.3. Flapping instability

The free surface bubble exhibits a periodic increase and decrease in size with St ¼ 0.32. The z magnitudes are larger

when the bubble size is smaller and vice versa, demonstrating a standing-wave-type nature. This standing wave with
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Fig. 13. Contour plots of d at instance of vortex breakdown.

Fig. 14. Instantaneous separation pattern over one Karman-like vortex shedding period displaying iso-surfaces of Q ¼ 1 at time steps

corresponding to the time markers on the CFD CP time-history plot in Fig. 9(a); the diamond location marker indicates the location at

which the CP time history is presented in Fig. 9(a): (a) 0 TK, (b) 1/3 TK, (c) 3/5 TK, and (d) 1 TK.
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Fig. 15. Free surface streamlines showing extremities of the bubble size corresponding to the flapping instability at time steps

corresponding to the time markers on the CFD z time-history plots shown in Fig. 10(a); the square location marker indicates the

location at which the z time history is presented in Fig. 10(a): (a) 1
4 TF and (b) 1TF.
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St ¼ 0.32 shows up in the dominant St contours on the free surface, outside the separation bubble (Fig. 5(b)). Fig. 15

shows two extremities of the bubble size at time steps corresponding to the time markers in Fig. 10(a). The square

location markers indicate the location at which the z time histories and frequency spectra are presented in Figs. 10(a)

and (b), respectively. The reattachment point oscillates between x ¼ 0.79 and 0.84. The mean reattachment length XR is

0.42 giving StR ¼ 0.13. The oscillation of the instantaneous reattachment point indicates an oscillation of 0.12 XR about

the mean XR.
6. Conclusions

The applicability of URANS with a surface-tracking method to predict the vortical structures and instabilities has

been investigated for unsteady free surface wave-induced separation. Quantitative verification and validation studies

were conducted. The mean flow solutions for the free surface wave-elevation and foil surface pressure show good

correspondence with the EFD, the main shortcoming being that URANS predicts higher wave-elevation magnitudes,

and predicts a quicker pressure recovery after separation. The mean separation pattern shows a reattaching flow with

wall-bounded separation bubble. URANS proved capable in predicting the three main instabilities expected for

reattaching flows, namely the initial shear-layer instability causing the initial roll up of the shear-layer vortices, the

Karman-like shedding, which occurs after the merger of the shear-layer vortices, and the flapping of the separation

bubble. FFT of both z and the foil surface CP showed three distinct dominant frequency regions corresponding to the
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three instabilities. The r.m.s. of the free-surface oscillations indicates an initial amplitude defect of 30% where the shear

layer separates, and the defect progressively increases downstream as URANS rapidly dissipates the rolled up vortices.

The point-wise CP frequency spectra on the foil surface at the shear-layer and Karman-like instability dominant regions

show an amplitude defect of 50% and 75%, respectively.

One main difference between the vortex dynamics of the present case and other reattaching separated flows like

backward-facing steps and flow past leading blunt edge of circular cylinders is the relatively weaker Karman-like

shedding in the present case evident from both EFD and CFD. This is due to the comparatively shorter reattachment

length for the current case (XR ¼ 0.4L) which allows for the amalgamation of just two or three shear-layer vortices

prior to shedding. Flow past leading blunt edge of circular cylinders has a longer reattachment length (XR ¼ 10RC)

which allows for a higher amplification due to amalgamation of 10–20 shear-layer vortices (Sigurdson, 1995). URANS

further diminishes the strength of the predicted Karman-like vortices due to the rapid dissipation of the shear-layer

vortices before amalgamation.

The normalized frequencies based on relevant length scales for the shear-layer and Karman-like instability were

investigated for both laminar and turbulent cases at Fr ¼ 0.37. For the shear-layer instability, Sty for the turbulent case

is 40% lower than the laminar cases, suggesting that Sty varies inversely with the non-dimensional adverse pressure

gradient at separation. The deep flow in the laminar flow solutions exhibits asymmetric Karman shedding with Sth in

agreement with the universal value of 0.08, but near the free surface Sth decreases to 0.069. For the turbulent solutions,

the deep flow is attached and the free surface flow exhibits Karman-like shedding with Sth ¼ 0.066. The inclination of

the separated shear layer at the free surface, and the resulting reduction in interaction between the opposite vortices is

conjectured to be the cause of the reduced Sth for both the laminar and the turbulent cases. StR for the flapping

instability is comparable to that observed for backward-facing steps and blunt cylinders.

The complementary DES study (Xing et al., 2007) supports many of the findings from URANS. The global topology

of the mean flow was similar to URANS, showing similarity to the owl-face pattern. The mean DES volume flow

solutions showed a similar inverted ‘‘V’’ shape vortical flow pattern as seen from the URANS solutions with the

upstream leg depicting the mean of the shear-layer vortices and the downstream leg depicting the mean of the Karman-

like vortices. The DES solutions have broader frequency spectra for the free surface wave-elevation and foil surface

pressure, but they do show similar dominant frequencies as URANS without the amplitude defect. The comparisons

with DES and EFD indicate that URANS resolves the organized oscillations due to the large-scale vortical structures

and instabilities, but with deficiency in their amplitudes thereby capturing the gross features of the unsteady separation.

DES overcomes the amplitude deficiency, but similar to the EFD, the numerous small-scale vortices in the separation

region make isolation, visualization, and analysis of the large-scale vortical structures difficult. Phase averaging the

DES solutions would enable clearer identification of the organized oscillations, but the presence of multiple dominant

periodic modes with nonlinear interactions with each other makes this difficult. In the present study, the smoother flow

field due to the inherent time averaging of the URANS model enabled isolation of the large-scale vortical structures.
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